首页> 外文OA文献 >Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study
【2h】

Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study

机译:Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. Design: A time-series study using regional death registry between 2009 and 2010. Setting: 8 districts in a large metropolitan area in Northern China. Participants: 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Main outcome measures: Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. Results: The Bayesian model averaged GAMM (GAMM+ BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+ BMA gave slightly but noticeable wider CIs for the single-pollutant model (-1.09 to 4.28 vs -1.08 to 3.93) and the PCs-based model (-2.23 to 4.07 vs -2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, -1.12 to 4.85 versus -1.11 versus 4.83. Conclusions: The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes.
机译:目的:演示贝叶斯模型平均(BMA)与广义加性混合模型(GAMM)的应用,并提供一种新颖的建模技术,以评估时序研究中可吸入粗颗粒(PM10)与呼吸道死亡率之间的关联。设计:2009年至2010年间使用区域死亡登记系统进行的时间序列研究。背景:中国北方一个大都市地区的8个地区。参与者:2009年至2010年期间,八个地区的9559名永久居民死于呼吸道疾病。主要结果指标:每个四分位间距(IQR)的每日呼吸道死亡率(MR)的百分比增加,PM10浓度的增加和相应的95%置信区间(CI)在单污染物和多污染物(包括NOx,CO)模型中。结果:贝叶斯模型的平均GAMM(GAMM + BMA)和PM10,多种污染物和多种污染物的主要成分(PCs)的最佳GAMM对PM10对每日呼吸MR的影响显示出可比的结果,即PM10浓度增加了一个IQR每日呼吸MR分别增加至1.38%对1.39%,1.81%对1.83%和0.87%对0.88%。但是,对于单一污染物模型(-1.09至4.28与-1.08至3.93)和基于PC的模型(-2.23至4.07与-2.03对3.88),GAMM + BMA给出了略微但值得注意的较宽CI。两种方法的多污染物模型的CI相似,即-1.12至4.85与-1.11对4.83。结论:当评估空气污染对致命健康结果的影响时,BMA方法可能是一种有用的工具,可用于对时序研究中的不确定性进行建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号